64 research outputs found

    Encapsulation of two-dimensional materials inside carbon nanotubes : towards an enhanced synthesis of single-layered metal halides

    Get PDF
    The unique properties of two-dimensional (2D) nanomaterials make them highly attractive for a wide range of applications. As a consequence, several top-down and bottom up approaches are being explored to isolate or synthesize single-layers of 2D materials in a reliable manner. Here we report on the synthesis of individual layers of several 2D van der Waals solids, namely CeI, CeCl, TbCl and ZnI by template-assisted growth using carbon nanotubes as directing agents, thus proving the versatility of this approach. Once confined, the metal halides can adopt different structures including single-layered metal halide nanotubes, which formation is greatly enhanced by increasing the temperature of synthesis. This opens up a new strategy for the isolation of individual layers of a wide variety of metal halides, a family of 2D materials that has been barely explored

    The interaction of carbon nanotubes with an invitro blood-brain barrier model and mouse brain in vivo

    Get PDF
    Under a Creative Commons license.-- et al.Carbon nanotubes (CNTs) are a novel nanocarriers with interesting physical and chemical properties. Here we investigate the ability of amino-functionalized multi-walled carbon nanotubes (MWNTs-NH3+) to cross the Blood-Brain Barrier (BBB) in vitro using a co-culture BBB model comprising primary porcine brain endothelial cells (PBEC) and primary rat astrocytes, and in vivo following a systemic administration of radiolabelled f-MWNTs. Transmission Electron microscopy (TEM) confirmed that MWNTs-NH3+ crossed the PBEC monolayer via energy-dependent transcytosis. MWNTs-NH3+ were observed within endocytic vesicles and multi-vesicular bodies after 4 and 24 h. A complete crossing of the in vitro BBB model was observed after 48 h, which was further confirmed by the presence of MWNTs-NH3+ within the astrocytes. MWNT-NH3+ that crossed the PBEC layer was quantitatively assessed using radioactive tracers. A maximum transport of 13.0 ± 1.1% after 72 h was achieved using the co-culture model. f-MWNT exhibited significant brain uptake (1.1 ± 0.3% injected dose/g) at 5 min after intravenous injection in mice, after whole body perfusion with heparinized saline. Capillary depletion confirmed presence of f-MWNT in both brain capillaries and parenchyma fractions. These results could pave the way for use of CNTs as nanocarriers for delivery of drugs and biologics to the brain, after systemic administration.KAJ acknowledges funding from Biotechnology and Biological Sciences Research Council (BB/J008656/1) and Worldwide Cancer Research (12-1054). KAJ, EP and BB acknowledge the EU FP7-ITN Marie-Curie Network programme RADDEL (290023). HK was sponsored by the Atomic Energy Commission of Syria. EP is enrolled in the UAB PhD program. KAJ thanks the members of the EU COST actions TD1004 (Theranostics Imaging and Therapy: An Action to Develop Novel Nanosized Systems for Imaging-Guided Drug Delivery and Biological Processes) for sponsoring HK's research stay at the ICN2 for the electron microscopy studies. ICN2 acknowledges support from the Severo Ochoa Program (MINECO, Grant SEV-2013-0295). Open Access funded by Biotechnology and Biological Sciences Research CouncilPeer Reviewe

    Design of antibody-functionalized carbon nanotubes filled with radioactivable metals towards a targeted anticancer therapy

    Get PDF
    Spinato, Cinzia et al.In the present work we have devised the synthesis of a novel promising carbon nanotube carrier for the targeted delivery of radioactivity, through a combination of endohedral and exohedral functionalization. Steam-purified single-walled carbon nanotubes (SWCNTs) have been initially filled with radioactive analogues (i.e. metal halides) and sealed by high temperature treatment, affording closed-ended CNTs with the filling material confined in the inner cavity. The external functionalization of these filled CNTs was then achieved by nitrene cycloaddition and followed by the derivatization with a monoclonal antibody (Cetuximab) targeting the epidermal growth factor receptor (EGFR), overexpressed by several cancer cells. The targeting efficiency of the so-obtained conjugate was evaluated by immunostaining with a secondary antibody and by incubation of the CNTs with EGFR positive cells (U87-EGFR+), followed by flow cytometry, confocal microscopy or elemental analyses. We demonstrated that our filled and functionalized CNTs can internalize more efficiently in EGFR positive cancer cells.The research leading to these results has received funding from the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme FP7/2007–2013/ under REA grant agreement no 290023 (RADDEL). This work was partly supported by the Centre National de la Recherche Scientifique (CNRS), by the Agence Nationale de la Recherche (ANR) through the LabEx project Chemistry of Complex Systems (ANR-10-LABX-0026_CSC) and by the International Center for Frontier Research in Chemistry (icFRC). ICN2 acknowledges support from the Severo Ochoa Program (MINECO, Grant SEV-2013-0295). KCL acknowledges support from WCR. The authors are grateful to Thomas Swan & Co. Ltd for providing Elicarb® SWCNTs. MM, MK and EP work has been done as a part of PhD program in Materials Sciences at UAB.Peer reviewe

    Charge transfer in steam purified arc discharge single walled carbon nanotubes filled with lutetium halides

    Get PDF
    Altres ajuts: we also acknowledge financial support from the Czech science foundation (20-08633X), MEYS project (LTC18039). The authors also acknowledge the assistance provided by the Research Infrastructures Nano-EnviCz (Project No. LM2015073) supported by the Ministry of Education, Youth and Sports of the Czech Republic and the project Pro-NanoEnviCz (Reg. No. CZ.02.1.01/0.0/0.0/ 16_013/0001821) supported by the Ministry of Education, Youth and Sports of the Czech Republic and the European Union - European Structural and Investments Funds in the frame of Operational Programme Research Development and Education.In the present work, the effect of doping on electronic properties in bulk purified and filled arc-discharge single-walled carbon nanotubes samples is studied for the first time by in situ Raman spectroelectrochemical method. A major challenge to turn the potential of SWCNTs into customer applications is to reduce or eliminate their contaminants by means of purification techniques. Besides, the endohedral functionalization of SWCNTs with organic and inorganic materials (i.e. metal halides) allows the development of tailored functional hybrids. Here, we report the purification and endohedral functionalization of SWCNTs with doping affecting the SWCNTs. Steam-purified SWCNTs have been filled with selected lutetium(iii) halides, LuCl, LuBr, LuI, and sealed using high-temperature treatment, yielding closed-ended SWCNTs with the filling material confined in the inner cavity. The purified SWCNTs were studied using TGA, EDX, STEM and Raman spectroscopy. The lutetium(iii) halide-filled SWCNTs (LuX@SWCNTs) were characterized using STEM, EDX, Raman spectroscopy and in situ Raman spectroelectrochemistry. It was found that there is a charge transfer between the SWCNTs and the encapsulated LuX (X = Cl, Br, I). The obtained data testify to the acceptor doping effect of lutetium(iii) halides incorporated into the SWCNT channels, which is accompanied by the charge transfer from nanotube walls to the introduced substances

    Synthesis of dry SmCl₃ from Sm₂O₃ revisited. Implications for the encapsulation of samarium compounds into carbon nanotubes

    Get PDF
    Samarium is a rare-earth metal with several applications in materials science. It is used in organic chemistry as a reducing agent and it is the active payload in samarium-153 lexidronam, a drug being used for palliative treatment of bone metastases. Recently, the encapsulation of samarium compounds into the cavities of carbon nanotubes has attracted interest for the development of the next generation of radiopharmaceuticals. In the present study, we explore different routes to afford the encapsulation of samarium based materials into single-walled carbon nanotubes. Anhydrous samarium(III) chloride, despite being highly hygroscopic, raises as an excellent candidate to achieve a high filling efficiency. We provide a protocol that allows the synthesis of anhydrous samarium(III) chloride starting from samarium(III) oxide in a fast and simple manner. Synchrotron X-ray powder diffraction confirmed the crystallinity and purity of the synthesized SmCl₃

    Water adsorption, dissociation and oxidation on SrTiO3 and ferroelectric surfaces revealed by ambient pressure X-ray photoelectron spectroscopy

    Get PDF
    Water dissociation on oxides is of great interest because its fundamental aspects are still not well understood and it has implications in many processes, from ferroelectric polarization screening phenomena to surface catalysis and surface chemistry on oxides. In situ water dissociation and redox processes on metal oxide perovskites which easily expose TiO-terminated surfaces, such as SrTiO, BaTiO or Pb(Zr,Ti)O, are studied by ambient pressure XPS, as a function of water vapour pressure. From the analysis of the O1s spectrum, we determine the presence of different types of oxygen based species, from hydroxyl groups, either bound to Ti and metal sites or lattice oxygen, to different peroxide compounds, and propose a model for the adsorbate layer composition, valid for environmental conditions. From the XPS analysis, we describe the existing surface redox reactions for metal oxide perovskites, occurring at different water vapour pressures. Among them, peroxide species resulting from surface oxidative reactions are correlated with the presence of Ti ions, which are observed to specifically promote surface oxidation and water dissociation as compared to other metals. Finally, surface peroxidation is enhanced by X-ray beam irradiation, leading to a higher coverage of peroxide species after beam overexposure and by ferroelectric polarization, demonstrating the enhancement of the reactivity of the surfaces of ferroelectric materials due to the effect of internal electric fields

    Filling Single-Walled Carbon Nanotubes with Lutetium Chloride : A Sustainable Production of Nanocapsules Free of Nonencapsulated Material

    Get PDF
    Filled carbon nanotubes are of interest for a wide variety of applications ranging from sensors to magnetoelectronic devices and going through the development of smart contrast and therapeutic agents in the biomedical field. In general, regardless of the method employed, bulk filling of carbon nanotubes results in the presence of a large amount of external nonencapsulated material. Therefore, further processing is needed to achieve a sample in which the selected payload is present only in the inner cavities of the nanotubes. Here, we report on a straightforward approach that allows the removal of nonencapsulated compounds in a time efficient and environmentally friendly manner, using water as a "green" solvent, while minimizing the residual waste. The results presented herein pave the way toward the production of large amounts of high-quality closed-ended filled nanotubes, also referred to as carbon nanocapsules, readily utilizable in the foreseen applications

    Experimental and theoretical investigation of the electronic structure of Cu2O and CuO thin films on Cu(110) using x-ray photoelectron and absorption spectroscopy

    Get PDF
    The electronic structure of Cu2O and CuO thin films grown on Cu(110) was characterized by X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy (XAS). The various oxidation states, Cu0, Cu+, and Cu2+, were unambiguously identified and characterized from their XPS and XAS spectra. We show that a clean and stoichiometric surface of CuO requires special environmental conditions to prevent loss of oxygen and contamination by background water. First-principles density functional theory XAS simulations of the oxygen K edge provide understanding of the core to valence transitions in Cu+ and Cu 2+. A novel method to reference x-ray absorption energies based on the energies of isolated atoms is presented.Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicada

    Experimental and theoretical investigation of the electronic structure of Cu2O and CuO thin films on Cu(110) using x-ray photoelectron and absorption spectroscopy

    Get PDF
    The electronic structure of Cu2O and CuO thin films grown on Cu(110) was characterized by X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy (XAS). The various oxidation states, Cu0, Cu+, and Cu2+, were unambiguously identified and characterized from their XPS and XAS spectra. We show that a clean and stoichiometric surface of CuO requires special environmental conditions to prevent loss of oxygen and contamination by background water. First-principles density functional theory XAS simulations of the oxygen K edge provide understanding of the core to valence transitions in Cu+ and Cu 2+. A novel method to reference x-ray absorption energies based on the energies of isolated atoms is presented.Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicada

    Effect of steam-treatment time on the length and structure of single-walled and double-walled carbon nanotubes

    Get PDF
    A major challenge to turn the potential of carbon nanotubes (CNTs) into customer applications is to reduce or eliminate their toxicity. Taking into account health and safety concerns, intensified research efforts have been conducted to improve the biocompatibility of CNTs, including the development of new shortening and purification strategies. Ideally, the methods used for improving the biocompatibility of CNTs should not alter the electronic properties of CNTs. Herein, we report on the shortening of a sample containing single-walled and double-walled CNTs using steam and obtain new insights in the properties of the steam-treated CNTs. The present study shows that short CNTs (median length ca. 200 nm) can be obtained under the reported conditions. Raman analysis reveals that wider and outer nanotubes undergo more significant changes than the narrower and inner ones, especially after a prolonged steam treatment
    corecore